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Abstract

The implementation of scalable synchronized data structures is notoriously difficult. Recent work
in shared-memory multicores introduced a new synchronization paradigm called flat combining that
allows many concurrent accessors to cooperate efficiently to reduce contention on shared locks. In
this work we introduce this paradigm to a domain where reducing communication is paramount:
distributed memory systems. We implement a flat combining framework for Grappa, a latency-tolerant
PGAS runtime, and show how it can be used to implement synchronized global data structures. Even
using simple locking schemes, we find that these flat-combining data structures scale out to 64 nodes
with 2x-100x improvement in throughput. We also demonstrate that this translates to application
performance via two simple graph analysis kernels. The higher communication cost and structured
concurrency of Grappa lead to a new form of distributed flat combining that drastically reduces the
amount of communication necessary for maintaining global sequential consistency.

1 Introduction
The goal of partitioned global address space (PGAS) [10] languages and runtimes is to provide the
illusion of a single shared memory to a program actually executing on a distributed memory machine
such as a cluster. This allows programmers to write their algorithms without needing to explicitly
manage communication. However, it does not alleviate the need for reasoning about consistency among
concurrent threads. Luckily, the PGAS community can leverage a large body of work solving these issues
in shared memory and explore how differing costs lead to different design choices.

It is commonly accepted that the easiest consistency model to reason about is sequential consistency
(SC), which enforces that all accesses are committed in program order and appear to happen in some
global serializable order. To preserve SC, operations on shared data structures should be linearizable [14];
that is, appear to happen atomically in some global total order. In both physically shared memory and
PGAS, maintaining linearizability presents performance challenges. The simplest way is to have a
single global lock to enforce atomicity and linearizability through simple mutual exclusion. Literally
serializing accesses in this way is typically considered prohibitively expensive, even in physically shared
memory. However, even in fine-grained lock-free synchronization schemes, as the number of concurrent
accessors increases, there is more contention, resulting in more failed synchronization operations. With
the massive amount of parallelism in a cluster of multiprocessors and with the increased cost of remote
synchronization, the problem is magnified.

A new synchronization technique called flat combining [12] coerces threads to cooperate rather than
contend. Threads delegate their work to a single thread, giving it the opportunity to combine multiple
requests in data-structure specific ways and perform them free from contention. This allows even a
data structure with a single global lock to scale better than complicated concurrent data structures using
fine-grained locking or lock-free mechanisms.

The goal of this work is to apply the flat-combining paradigm to a PGAS runtime to reduce the
cost of maintaining sequentially consistent data structures. We leverage Grappa, a PGAS runtime
library optimized for fine-grained random access, which provides the ability to tolerate long latencies
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Figure 1: Grappa System Overview: Thousands of workers are multiplexed onto each core, context
switching to tolerate the additional latency of aggregating remote operations. Each core has exclusive
access to a slice of the global heap which is partitioned across all nodes, as well as core-private data and
worker stacks. Tasks can be spawned and executed anywhere, but are bound to a worker in order to be
executed.

by efficiently switching between many lightweight threads as sketched out in prior work [19]. We
leverage Grappa’s latency tolerance mechanisms to allow many fine-grained synchronized operations
to be combined to achieve higher, scalable throughput while maintaining sequential consistency. In
addition, we show how a generic flat-combining framework can be used to implement multiple global
data structures.

The next section will describe in more detail the Grappa runtime system that is used to implement
flat combining for distributed memory machines. We then explain the flat-combining paradigm in more
depth and describe how it maps to a PGAS model. Next, we explain how several data structures are
implemented in our framework and show how they perform on simple throughput workloads as well as
in two graph analysis kernels.

2 Grappa
Irregular applications are characterized by having unpredictable data-dependent access patterns and poor
spatial and temporal locality. Applications in this class, including data mining, graph analytics, and
various learning algorithms, are becoming increasingly prevalent in high-performance computing. These
programs typically perform many fine-grained accesses to disparate sources of data, which is a problem
even at multicore scales, but is further exacerbated on distributed memory machines. It is often the case
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that naively porting an application to a PGAS system results in excessive communication and poor access
patterns [8], but this class of applications defies typical optimization techniques such as data partitioning,
shadow objects, and bulk-synchronous communication transformations. Luckily, applications in this
class have another thing in common: abundant amounts of data access parallelism. This parallelism can
be exploited in a number of different ways to improve overall throughput.

Grappa is a global-view PGAS runtime for commodity clusters which has been designed from the
ground up to achieve high performance on irregular applications. The key is latency tolerance—long-
latency operations such as reads of remote memory can be tolerated by switching to another concurrent
thread of execution. Given abundant concurrency, there are opportunities to increase throughput by
sacrificing latency. In particular, throughput of random accesses to remote memory can be improved by
delaying communication requests and aggregating them into larger packets.

Highly tuned implementations of irregular applications in shared-memory, PGAS, and message-
passing paradigms, typically end up implementing similar constructs. Grappa includes these as part of
its core infrastructure and simply asks the programmer to express concurrency which it can leverage to
provide performance.

Grappa’s programming interface, implemented as a C++11 library, provides high-level operations to
access and synchronize through global shared memory, and task and parallel loop constructs for expressing
concurrency. In addition, the Grappa “standard library” includes functions to manipulate a global heap,
stock remote synchronization operations such as compare-and-swap, and several synchronized global
data structures. These features make it suitable for implementing some next-generation PGAS languages
like Chapel [6] and X10 [7]. The following sections will explain the execution model of Grappa and the
current C++ programming interface.

2.1 Tasks and Workers
Grappa uses a task-parallel programming model to make it easy to express concurrency. A task is simply
a function object with some state and a function to execute. Tasks may block on remote accesses or
synchronization operations. The Grappa runtime has a lightweight threading system that uses prefetching
to scale up to thousands of threads on a single core with minimal increase in context-switch time. In
the runtime, worker threads pull these programmer-specified tasks from a queue and execute them
to completion. When a task blocks, the worker thread executing it is suspended and consumes no
computational resources until woken again by some event.

2.2 Aggregated Communication
The most basic unit of communication in Grappa is an active message [24]. To make efficient use of the
networks in high-performance systems, which typically achieve maximum bandwidth only for messages
on the order of 64 KB, all communication in Grappa is sent via an aggregation layer that automatically
buffers messages to the same destination.

2.3 Global Memory
In the PGAS style, Grappa provides a global address space partitioned across the physical memories of
the nodes in a cluster. Each core owns a portion of memory, which is divided among execution stacks for
the core’s workers, a core-local heap, and a slice of the global heap.

All of these can be addressed by any core in the system using a GlobalAddress, which encodes both
the owning core and the address on that core. Additionally, addresses into the global heap are partitioned
in a block-cyclic fashion, so that a large allocation is automatically distributed among many nodes. For
irregular applications, this helps avoid hot spots and is typically sufficient for random access.
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Figure 2: Flat combining in shared memory. To access the shared stack, each thread adds its request
to the publication list (1). Thread 4 acquires the stack’s lock and becomes the combiner (2), while the
remaining threads spin waiting for their request to be satisfied. The combiner walks the publication list
from the head, matching up Thread 3’s push with Thread 2’s pop on its own private stack (3). The two
remaining pushes are added to the top of the shared stack (4). Finally, the top is updated, and Thread 4
releases the lock and continues its normal execution.

Grappa enforces strict isolation—all accesses must be done by the core that owns it via a message,
even between processes on the same physical memory. At the programming level, however, this is hidden
behind higher-level remote operations, which in Grappa are called delegates. Figure 1 shows an example
of a delegate read which blocks the calling task and sends a message to the owner, who sends a reply
with the data and wakes the caller.

3 Flat Combining
At the most basic level, the concept of flat combining is about enabling cooperation among threads rather
than contention. The benefits can be broken down into three components: improved locality, reduced
synchronization, and data-structure-specific optimization. We will explore how this works in a traditional
shared-memory system, and then describe how the same concepts can be applied to distributed memory.

3.1 Physically shared memory
Simply by delegating work to another core, locality is improved and synchronization is reduced. Consider
the shared synchronous stack shown in Figure 2, with pre-allocated storage and a top pointer protected
by a lock. Without flat combining, whenever a thread attempts to push something on the stack, it must
acquire the lock, put its value into the storage array, bump the top, and then release the lock. When many
threads contend for the lock, all but one will fail and have to retry. Each attempt forces an expensive
memory fence and consumes bandwidth, and as the number of threads increases, the fraction of successes
plummets. Under flat combining, instead, threads add requests to a publication list. They each try to
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acquire the lock, and the one that succeeds becomes the combiner. Instead of retrying, the rest spin
on their request waiting for it to be filled. The combiner walks the publication list, performs all of the
requests, and when done, releases the lock. This allows the one thread to keep the data structure in cache,
reducing thrashing between threads on different cores. It also greatly reduces contention on the lock, but
introduces a new point of synchronization—adding to the publication list. However, if a thread performs
multiple operations, it can leave its publication record in the list and amortize the synchronization cost.
This publication list mechanism can be re-used in other data structures, saving each from needing to
implement its own clever synchronization.

The above example of delegation is compelling in itself. However, the crux of prior work is that data
structure-specific optimization can be done to perform the combined operations more efficiently. As
the combiner walks the publication list, it merges each non-empty publication record into a combined
operation. In the case of the stack example shown in Figure 2, as it walks the list, Thread 4 keeps track
of the operations on its own temporary stack. When it encounters Thread 2’s pop, it recognizes that it
can satisfy that pop immediately with the push it just processed from Thread 3, so it fills both of their
records and allows them to proceed. After traversing the rest of the publication list, the thread applies the
combined operation to the actual data structure, in this case, the two unmatched pushes are added to the
top of the stack. In the case of the stack, combining came in the form of matched pushes and pops, but
many data structures have other ways in which operations can be matched.

3.2 Grappa

In a PGAS setting, and in Grappa in particular, the cost of global synchronization and the amount of
concurrency is even greater than in shared memory. With thousands of workers per core, in a reasonably
sized cluster there are easily millions of workers. This presents an opportunity for flat combining to pay
off greatly, but also poses new challenges.

To illustrate how flat combining can be applied to Grappa, we must first describe what a global data
structure looks like. Figure 3 shows a simple PGAS translation of the shared-memory stack from earlier.
A storage array is allocated in the global heap, so its elements are striped across all the cores in the
system. One core is designated the master to enforce global synchronization, and holds the elements of
the data structure that all concurrent accessors must agree on, in this case, the top pointer.

All tasks accessing the stack hold a GlobalAddress to the master object, and invoke custom delegate
methods that, like the read delegate described earlier, block the task until complete. Example code to
do a push is shown in Figure 5. The task must send a message to the master to acquire the lock. If
successful, it follows the top pointer, writes its new value to the end of the stack, returns to bump the
top pointer and release the lock, and finally sends a message back to wake the calling worker. All others
block at the first message until the lock is released. Grappa’s user-level threading allows requests to block
without consuming compute resources. However, all workers on each core perform this synchronization
and serialize on a single core, causing that core to become the bottleneck.

Centralized Combining. A first thought might be to directly apply the idea of flat combining to the
serialization at the master. The worker that acquires the lock can walk through the requests of all the other
workers waiting to acquire the lock and combine them. In the case of the Stack, this would mean matching
pushes and pops, applying the remainder, and sending messages back to all remote workers with results,
before starting another round of combining. This approach reduces traffic to the data structure storage,
but a single core must still process every request, so it cannot scale if every other core is generating
requests at the same rate.
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Figure 3: Stack without combining. To do its push, Worker 1 sends a message to synchronize with the
master on Core 0 (1), which sends another message to write the value to the top of the stack (2), bumps
the synchronized top pointer (3), and finally continues. Worker 2, and workers on other cores, must
block at the master and wait for Worker 1 to complete its push before doing their operations (4).

Distributed Combining. Instead of all workers sending independent synchronization messages and
putting the burden all on one core, each core can instead do its own combining first then synchronize
with the master in bulk. Distributing the combining to each core allows the majority of the work to be
performed in parallel and without communication.

In distributed flat-combining, each core builds its own publication list to track all the operations
waiting to be committed to the global data structure. In Grappa, for each global data structure, a local
proxy object is allocated from the core-local heap to intercept requests. Conceptually, workers add their
requests to a local publication list in the proxy, one is chosen to do the combining, and the rest block
until their request is satisfied. However, because Grappa’s scheduler is non-preemptive, each worker
has atomicity “for free” until it performs a blocking operation (such as communication). This means
that an explicit publication list with clever synchronization is unnecessary. Instead, workers merge their
operations directly into the local proxy, and block, except in restricted cases where they are able to satisfy
their requirements immediately without violating ordering rules for consistency (discussed in the next
section). The proxy structure is chosen to be able to compactly aggregate operations and efficiently
perform matching in cases where it is allowed. Figure 4 shows how pushes and pops are matched on the
proxy’s local stack.

After all local combining has been done, one requesting worker on the core is chosen to commit
the combined operation globally. In Figure 4, Worker 4 becomes the combiner and performs much
the same synchronization as in the uncombined case, but is able to push multiple elements with one
synchronization. The global lock must still be acquired, so concurrent combined requests (from different
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Figure 4: Stack with distributed combining. Worker 3’s pop matches with Worker 2’s push, requiring
no global communication (1). After combining locally, Worker 1 and 4’s pushes remain, so Worker 4
becomes the core’s combiner (2), sends a message to synchronize with the master (3), adds both new
values to global stack (4), bumps the top pointer and releases the lock on master (5), and finally wakes
Worker 1 (6).

cores) must block and serialize on the master, but the granularity of global synchronization is coarser,
reducing actual serialization.

Centralized combining could be applied on top of distributed combining, combining the combined
operations at the master node. However, in our experiments, performing the additional combining on the
master did not significantly affect performance, so it is left out of our evaluation for space.

Memory Consistency Model. In the context of Grappa, sequential consistency guarantees that within
a task, operations will be in task order and that all tasks will observe the same global order. The Grappa
memory model is essentially the same as the C++ memory model [5, 4, 15], guaranteeing sequential
consistency for data-race free programs. To be conservative, delegate operations block the calling worker
until they have become globally visible, ensuring they can be used for synchronization. As such, delegate
operations within a task are guaranteed to be globally visible in program order and all tasks observe
the same global order. Operations on synchronized data structures must provide the same guarantees.
Because it is not immediately obvious that this distributed version of flat combining preserves sequential
consistency, we now argue why it does.

To behave in accordance with sequential consistency, operations on a particular data structure must
obey a consistent global order. One way to provide this is to guarantee linearizability [14] of operations,
which requires that the operation appear to take effect globally at some instantaneous point during
invocation of the API call. This ensures that a consistent total order can be imposed on operations on a
single data structure. For operations to be globally linearizable, first of all the execution of local combined
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operations must be serializable; this is unchanged from shared-memory flat-combining, and is trivially
true due to the atomicity enabled by cooperative multithreading. Second, combined operations must be
committed atomically in some globally serializable order. When committing, combined operations are
serialized at the particular core that owns the synchronization (the master core for the Stack). Whenever
a global commit starts, a fresh combiner must be created for subsequent operations to use. If they were to
use the old combiner’s state to satisfy requests locally, it would violate global ordering because the local
object would not reflect other cores’ updates. For this serial “concatenation” of serialized batches to be
valid, the order observed by workers during local combining must be the same as what can be observed
globally as operations are committed.

In the case of a stack or queue, this guarantee comes from applying a batch of push or pop operations
atomically in a contiguous block on the global data structure. Matching pushes and pops locally for
the Stack is one exception to the rule that operations must block until globally committed. Because
a pop “destroys” the corresponding push, these operations together are independent of all others and
can conceptually be placed anywhere in a global order. It is trivial to respect program order with this
placement, so they can be safely matched locally.

Combining set and map operations exposes more nuances in the requirements for consistency.
Insert and lookup operations performed by different tasks are inherently unordered unless synchronized
externally. Therefore, a batch of these operations can be committed globally in parallel, since they
are guaranteed not to conflict with each other. Note that if an insert finds that its key is already in the
combiner object, it does not need to send its own message. However, it must still block until that insert is
done to ensure that a subsequent operation it performs cannot be reordered with it, preserving program
order. Similarly, lookups can piggy-back on other lookups of the same key.

Using intuition from store/write buffers in modern processors, it is tempting to allow a lookup to be
satisfied locally by inspecting outstanding inserts. However, this would allow the local order in which
keys were inserted to be observed. Then to preserve SC, that same order would need to be respected
globally, forcing each batch to commit atomically with respect to other cores’ batches. Enforcing this
would be prohibitively expensive, so a cheaper solution is chosen: lookups only get their values from the
global data structure, therefore batches can be performed in parallel.

These requirements only guarantee linearizability of operations on a single data structure. To
guarantee sequential consistency with respect to all accesses, data-race freedom must be guaranteed by
the program, as in the C++ memory model for shared memory.

4 Grappa FC Framework

To leverage the flat-combining paradigm in Grappa, we implemented a generic framework to improve
performance for a number of global data structures. The FC framework handles the common problems of
managing the combiners, handling worker wake-ups, and maintaining progress. When hooking into the
framework, each data structure need only define how to combine operations and globally commit them.

As mentioned before, the Grappa FC framework takes a different approach than the original flat-
combining work for expressing how operations combine. For each global structure instance, a proxy
object is created on each core and each worker merges its request into that structure before blocking or
becoming the combiner. Each global data structure must define a proxy that has state to track combined
requests, methods to add new requests, and a way to sync the state globally. An example proxy declaration
for the GlobalStack is shown in Figure 5.

The FC framework is responsible for ensuring that all of the combined operations eventually get
committed. There are a number of ways progress could be guaranteed, but one of the simplest is to
ensure that as long as there are any outstanding requests, at least one worker is committing a combined
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// Global master state
class GlobalStack {

GlobalAddress <T> top;
Grappa ::Mutex lock;

};
// Push *without* combining
void push(GlobalAddress <GlobalStack > master , T e){

// from stack’s master core , perform write to top and increment atomically
delegate ::call(master.core(), [master ,e]{

master ->lock.acquire ();
delegate ::write(master ->top , e);
master ->top++;
master ->lock.release ();

}); // blocks until response arrives
}
// Definition of proxy
class GlobalStackProxy : Grappa :: FCProxy {

GlobalAddress <GlobalStack > master;
// Local state for tracking requests
T pushed_values [1024];
T* popped_results [1024];
int npush , npop;

// Combining Methods
void push(T val);
T pop();

// Global sync (called by FC framework)
void sync() override {

if (npush > 0) {
// on master: acquire lock , return top ptr
auto top = delegate ::call(master.core() ,[=]{

master ->lock.acquire ();
return master ->top;

});
// copy values to top of stack
Grappa :: memcpy(top , pushed_values , npush);
// bump top and release lock
delegate ::call(master.core() ,[master ,npush]{

master ->top += npush;
master ->lock.release ();

});
} else if (npop > 0) {} // elided for space ...

}
};

Figure 5: Snippet of code from GlobalStack.

operation. When that combined operation finishes, if there are still outstanding requests that have built
up in the meantime, another blocked worker is chosen to do another combined synchronization.

While a combining operation is in flight, new requests continue to accumulate. The framework
transparently wraps the proxy object so when one sync starts, it can direct requests to a fresh combiner.
This is done by hiding instances of proxy objects behind a C++ smart-pointer-like object which provides
the pointer to the current combiner, and whenever it detects that it should send, allocates a new combiner
and points subsequent references to that.
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4.1 Global Stack and Queue

Figure 5 shows an excerpt from the definition of the proxy object for the Grappa GlobalStack. The proxy
tracks pushes in the pushed values array. When pop is called, if there are pushes, it immediately takes
the top value and wakes the last pusher. Otherwise, it adds a pointer to a location on its stack where the
sync operation will write the result. Because of local matching, when a Stack proxy is synchronized, it
will have either all pops or all pushes, which makes the implementation of sync straightforward. Note
that the operation to synchronize a batch of pushes looks almost identical to the code to do a single push
from Figure 5.

The GlobalQueue has nearly the same implementation as the stack, but is unable to match locally.

4.2 Global Set and Map

The Grappa GlobalSet uses a simple chaining design, implemented with a global array of cells (allocated
from the global heap), which are partitioned evenly among all the cores, and indexed with a hash function.
Our flat-combining version supports both insert and lookup. To track all of the keys waiting to be
inserted, we use the hash set implementation from the C++11 standard library (std::unordered set).
As with pops, lookups must provide pointers to stack space where results should be put, which is done
with a hash map (again from the C++ standard library) from keys to lists of pointers. As discussed in
Section 3.2, matching lookups with inserts locally would force a particular sequential order. Instead, we
only allow matching inserts with inserts and lookups with lookups, allowing sync to simply issue all
inserts and lookups in parallel and block until all have completed.

Our implementation of the GlobalMap matches that of the Set but of course stores values.

5 Evaluation
To evaluate the impact flat combining has, we ran a series of experiments to test the raw performance of
the data structures themselves under different workloads, and then measure the impact on performance of
two graph benchmarks. Experiments were run on a cluster of AMD Interlagos processors. Nodes have 32
2.1-GHz cores in two sockets, 64GB of memory, and 40Gb Mellanox ConnectX-2 InfiniBand network
cards connected via a QLogic switch.

5.1 Data Structure Throughput

First we measured the raw performance of the global data structures on synthetic throughput workloads.
In each experiment, a Grappa parallel loop spawns an equal number of tasks on all cores. Each task
randomly chooses an operation based on the predetermined “operation mix,” selecting either a push or
pop for the Stack and Queue, or an insert or lookup for the Set and Map.

Queue and Stack. Figure 6 shows the results of the throughput experiments for the global Stack and
Queue. Results are shown with flat combining completely disabled, only combining at the master core
(“centralized”), and combining locally (“distributed”).

Despite Grappa’s automatic aggregation, without combining, both the stack and queue completely
fail to scale because all workers’ updates must serialize. Though centralized combining alleviates some
of the serialization, its benefit is limited because all operations involve synchronization through a single
core. However, with local flat combining, synchronization is done mostly in parallel, with less-frequent
bulk synchronization at the master.
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Figure 6: Queue and Stack performance. Results are shown on a log scale for a throughput workload
performing 256 million operations with 2048 workers per core and 16 cores per node. Local flat
combining improves throughput by at least an order of magnitude and allows performance to scale.
Matching pushes and pops enables the stack to perform even better on a mixed workload.
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Figure 7: GlobalStack Statistics. Measured number of combined messages sent by the Stack with a fixed
combining buffer of 1024 elements. Matched pushes and pops result in ops/message being greater than
the buffer size.

On the mixed workload, the stack is able to do matching locally, allowing it to reduce the amount of
communication drastically, greatly improving its performance. Figure 7 corroborates this, showing that
the amount of combining that occurs directly correlates with the observed throughput.
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Figure 8: GlobalHashSet and GlobalHashMap. Results are shown for a throughput workload inserting
and looking up 256 million random keys in a particular range into a global hash with the same number of
cells, with 2048 workers per core and 16 cores per node.

The queue benefits in the same way from reducing synchronization and batching, and its all-push
workload performs identically to the stack’s. However, the queue is unable to do matching locally, and in
fact, the mixed workload performs worse because the current implementation serializes combined pushes
and combined pops. This restriction could be lifted with more careful synchronization at the master core.

HashSet and HashMap. Figure 8 shows the throughput results for the Set and Map. Both data
structures synchronize at each hash cell, which allows them to scale fairly well even without combining.
However, after 32 nodes, scaling drops off significantly due to the increased number of destinations.
Combining allows duplicate inserts and lookups to be eliminated, so performs better the smaller the key
range. This reduction in message traffic allows scaling out to 64 nodes.

5.2 Application Kernel Performance

The Grappa data structures are synchronized to provide the most general use and match the expectations
of programmers and algorithms. In these evaluations, we compare the flat-combining structures against
custom, tuned versions that leverage relaxed consistency needs of the applications.

Breadth-First Search. The first application kernel is the Graph500 Breadth-First-Search (BFS) bench-
mark [11]. This benchmark does a search starting from a random vertex in a synthetic graph and builds a
search tree of parent vertices for each vertex traversed during the search. The BFS algorithm contains a
global queue which represents the frontier of vertices to be visited in each level. Our implementation
employs the direction-optimizing algorithm by Beamer et al. [2]. The frontier queue is write-only in one
phase and read-only in the next, making it amenable to relaxed consistency. We compare performance of
BFS using the Grappa FC queue described above with a highly tuned Grappa implementation that uses a
custom asynchronous queue.
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(a) BFS with the direction-optimizing algorithm.
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(b) Connected Components using Kahan’s algorithm.

Figure 9: Performance of graph kernels on a Graph500-spec graph of scale 26 (64 million vertices, 1
billion edges). Performance for both is measured in Millions of Traversed Edges Per Second (MTEPS).

Figure 9a shows the scaling results. Using the simple queue without flat combining is completely
unscalable, but with FC, it tracks the tuned version. This illustrates that providing a safe, synchronized
data structure for initially developing algorithms for PGAS is possible without sacrificing scaling.

Connected Components. Connected Components (CC) is another core graph analysis kernel that
illustrates a different use of global data structures in irregular applications. We implement the three-phase
CC algorithm [3] which was designed for the massively parallel MTA-2 machine. In the first phase,
parallel traversals attempt to claim vertices and label them. Whenever two traversals encounter each
other, an edge between the two roots is inserted in a set. The second phase performs the classical
Shiloach-Vishkin parallel algorithm [22] on the reduced graph formed by the edge set from the first
phase, and the final phase propagates the component labels out to the full graph. Creation of the reduced
edge set dominates the runtime of this algorithm, but includes many repeated inserts at the boundary
between traversals, so is a prime target for the flat-combining Set. Similar to BFS, the Set is write-only
first, then read-only later, so further optimizations involving relaxation of consistency can be applied.
Therefore, we compare our straightforward implementation using the generic Set with and without flat
combining against a tuned asynchronous implementation.

The results in Figure 9b show that none of these three scale well out to 64 nodes. However, performing
combining does improve the performance over the uncombined case. The tuned version outperforms the
synchronous version because it is able to build up most of the set locally on each core before merging
them at the end of the first phase. An implementation that did not provide synchronized semantics could
potentially relax consistency in a more general way.

6 Related Work
Though much attention has gone to lock-free data structures such as the Treiber Stack [23] and Michael-
Scott Queue [18], a significant body of work has explored ways of scaling globally locked data structures
using combining to reduce synchronization and hot-spotting. Techniques differ mainly in the structures
used to do combining: fixed trees [25], dynamic trees (or “funnels”) [20, 17], and randomized trees [1].
In particular, MAMA [17], built for the MTA-2, leveraged funnels to better utilize hardware optimized
for massive concurrency. On the other hand, flat combining [12] observed that in multicore systems,
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hierarchical schemes have too much overhead, and a cleverly implemented flat publication list can
perform better. Follow-on work introduced parallel flat-combining [13], in which multiple publication
lists are combined in parallel and their remainders serialized. Flat combining was also applied in the
NUMA (non-uniform memory access) domain with scalable hierarchical locks [9], which improves
on prior work on hierarchical locking by leveraging flat-combining’s publication mechanism which
amortizes the cost of synchronization.

Our work extends the flat-combining paradigm further, to the PGAS domain, where only software
provides the illusion of global memory to physically distributed memories. The relatively higher cost
of fine-grained data-driven access patterns in PGAS makes flat combining even more compelling. In
addition, the physical isolation per node combined with Grappa’s engineered per-core isolation guarantees,
create a novel situation for combining, which led to our combining proxy design.

In the distributed memory and PGAS domains, implementing scalable and distributed synchronization
is the name of the game. Besides Grappa, other work has proposed leveraging latency tolerance in PGAS
runtimes, including MADNESS [21] which proposes ways of using asynchronous operations in UPC,
and Zhang et al. [26] who use asynchronous messages in a UPC Barnes-Hut implementation to overlap
computation with communication and allow for buffering. Jose et al. introduced UPC Queues [16], a
library which provides explicit queues as a replacement for locks to synchronize more efficiently and
allow for buffering communication. This work demonstrates a similar use case for synchronized queues
as in our work, and uses them with the Graph500 benchmark as well. In contrast, Grappa performs much
of the same message aggregation invisibly to the programmer, and the FC framework can be used to
implement many data structures.

7 Conclusion

Coming from the multi-core domain, the flat-combining paradigm provides a new perspective to global
synchronization, bringing with it both challenges and new opportunities. We have shown that the
additional concurrency that comes with a latency-tolerant runtime, rather than compounding the problem,
provides a new opportunity for reducing communication by combining locally. In PGAS implementations
there is typically a large discrepancy between the first simple description of an algorithm and the final
optimized one. Our distributed flat-combining framework allows easy implementation of a library of
flat-combined linearizable global data structures, allowing even simple applications that use them to scale
out to a thousand cores and millions of concurrent threads.
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