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Automatic Locality Extraction via Migration
Brandon Holt, Preston Briggs, Luis Ceze, Mark Oskin
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⚗ algorithm
 Locality analysis 

– Identify anchor points 
– Partition anchors into locality sets 

 Heuristic region selection 
– Divide into regions that minimize communication 
– Transform task to migrate at region boundaries
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 Anchor points 
– memory locations are owned by one node 
– so memory references are anchored to that node 
– these are constraints on the thread’s execution
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 Locality partitioning: pessimistic value partitioning* (value numbering) 
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Detecting equality of variables in programs. 
POPL ’88, pages 1–11. ACM, 1988.



locality analysis

9

⚗ algorithm

 Locality partitioning: pessimistic value partitioning* (value numbering) 
– each anchor starts in its own set 
– merge sets if you can prove they are congruent 
– for locality partitioning: congruence means on the same node

A

B

i

fetch_add(&a->count, 1)

a->winner = i

B[i]

* B. Alpern, M. N. Wegman, and F. K. Zadeck. 
Detecting equality of variables in programs. 
POPL ’88, pages 1–11. ACM, 1988.



locality analysis

9

⚗ algorithm

 Locality partitioning: pessimistic value partitioning* (value numbering) 
– each anchor starts in its own set 
– merge sets if you can prove they are congruent 
– for locality partitioning: congruence means on the same node
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 C++ extensions to support global pointers 

 Anchor point / locality partitioning analysis pass 

 Region selection and continuation-passing transform pass
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⚗ evaluation

Connected Components
Pagerank
BFS

Intsort

GlobalHashSet symmetric* set; 
Graph symmetric* g; 
 
void explore(VertexID r, color_t color) { 
  Vertex global* vs = g->vertices(); 
  phaser.enroll(vs[r].nadj) 
  forall<async>(adj(g,vs+r), [=](VertexID j){ 
    auto& v = vs[j]; 
    if (cmp_swap(&v.color, -1, color)){ 
      spawn([=]{ explore(j, color); }); 
    } else if (v.color != color) { 
      Edge edge(color, v.color); 
      set->insert(edge); 
      phaser.complete(1); 
    } 
  }); 
  phaser.complete(1); 
} 



 Benchmarks 
– Ported Grappa applications (irregular, data-intensive, …) 

 Performance (12 nodes) 
– naive put/get compiler-generated  

communication 
– hand-tuned migration decisions 
– Alembic-generated migrations
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⚗ evaluation

Connected Components
Pagerank
BFS

Intsort

GlobalHashSet symmetric* set; 
Graph symmetric* g; 
 
void explore(VertexID r, color_t color) { 
  Vertex global* vs = g->vertices(); 
  phaser.enroll(vs[r].nadj) 
  forall<async>(adj(g,vs+r), [=](VertexID j){ 
    auto& v = vs[j]; 
    if (cmp_swap(&v.color, -1, color)){ 
      spawn([=]{ explore(j, color); }); 
    } else if (v.color != color) { 
      Edge edge(color, v.color); 
      set->insert(edge); 
      phaser.complete(1); 
    } 
  }); 
  phaser.complete(1); 
} 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⚗ Alembic
 Algorithm to make automatic migration decisions 

– Analyze locality by partitioning anchors 
– Greedy optimization to reduce communication cost heuristic 

 LLVM implementation for Grappa C++ 
 Performance — near hand-tuned, much better than PGAS baseline

Brandon Holt, Preston Briggs, Luis Ceze, Mark Oskin


